Citus BlogCitus Blog

Thoughts about the Citus database—as well as PostgreSQL, sharding, distributed databases, and other open source extensions to Postgres.

GPS has become part of our daily life. GPS is in cars for navigation, in smartphones helping us to find places, and more recently GPS has been helping us to avoid getting infected by COVID-19. Managing and analyzing mobility tracks is the core of my work. My group in Université libre de Bruxelles specializes in mobility data management. We build an open source database system for spatiotemporal trajectories, called MobilityDB. MobilityDB adds support for temporal and spatiotemporal objects to the Postgres database and its spatial extension, PostGIS. If you're not yet familiar with spatiotemporal trajectories, not to worry, we'll walk through some movement trajectories for a public transport bus in just a bit.

One of my team's projects is to develop a distributed version of MobilityDB. This is where we came in touch with the Citus extension to Postgres and the Citus engineering team. This post presents issues and solutions for distributed query processing of movement trajectory data. GPS is the most common source of trajectory data, but the ideas in this post also apply to movement trajectories collected by other location tracking sensors, such as radar systems for aircraft, and AIS systems for sea vessels.

Keep reading

One of the unique things about Postgres is that it is highly programmable via PL/pgSQL and extensions. Postgres is so programmable that I often think of Postgres as a computing platform rather than just a database (or a distributed computing platform—with Citus). As a computing platform, I always felt that Postgres should be able to take actions in an automated way. That is why I created the open source pg_cron extension back in 2016 to run periodic jobs in Postgres—and why I continue to maintain pg_cron now that I work on the Postgres team at Microsoft.

Using pg_cron, you can schedule Postgres queries to run periodically, according to the familiar cron syntax. Some typical examples:

Keep reading

In my work as an engineer on the Postgres team at Microsoft, I get to meet all sorts of customers going through many challenging projects. One recent database migration project I worked on is a story that just needs to be told. The customer—in the retail space—was using Redshift as the data warehouse and Databricks as their ETL engine. Their setup was deployed on AWS and GCP, across different data centers in different regions. And they'd been running into performance bottlenecks and also was incurring unnecessary egress cost.

Specifically, the amount of data in our customer's analytic store was growing faster than the compute required to process that data. AWS Redshift was not able to offer independent scaling of storage and compute—hence our customer was paying extra cost by being forced to scale up the Redshift nodes to account for growing data volumes. To address these issues, they decided to migrate their analytics landscape to Azure.

Keep reading
Andres Freund

Improving Postgres Connection Scalability: Snapshots

Written byBy Andres Freund | October 25, 2020Oct 25, 2020

I recently analyzed the limits of connection scalability, to understand the most effective way to improve Postgres' handling of large numbers of connections, and why that is important. I concluded that the most pressing issue is snapshot scalability.

This post details the improvements I recently contributed to Postgres 14 (to be released Q3 of 2021), significantly reducing the identified snapshot scalability bottleneck.

As the explanation of the implementation details is fairly long, I thought it'd be more fun for of you if I start with the results of the work, instead of the technical details (I'm cheating, I know ;)).

Keep reading

Postgres is an amazing RDBMS implementation. Postgres is open source and it's one of the most standard-compliant SQL implementations that you will find (if not the most compliant.) Postgres is packed with extensions to the standard, and it makes writing and deploying your applications simple and easy. After all, Postgres has your back and manages all the complexities of concurrent transactions for you.

In this post I am excited to announce that a new version of pg_auto_failover has been released, pg_auto_failover 1.4.

pg_auto_failover is an extension to Postgres built for high availability (HA), that monitors and manages failover for Postgres clusters. Our guiding principles from day one have been simplicity and correctness. Since pg_auto_failover is open source, you can find it on GitHub and it's easy to try out. Let's walk through what's new in pg_auto_failover, and let's explore the new capabilities you can take advantage of.

Keep reading

One common challenge with Postgres for those of you who manage busy Postgres databases, and those of you who foresee being in that situation, is that Postgres does not handle large numbers of connections particularly well.

While it is possible to have a few thousand established connections without running into problems, there are some real and hard-to-avoid problems.

Since joining Microsoft last year in the Azure Database for PostgreSQL team—where I work on open source Postgres—I have spent a lot of time analyzing and addressing some of the issues with connection scalability in Postgres.

Keep reading

When working on the internals of Citus, an open source extension to Postgres that transforms Postgres into a distributed database, we often get to talk with customers that have interesting challenges you won't find everywhere. Just a few months back, I encountered an analytics workload that was a really good fit for Citus.

But we had one problem: the percentile calculations on their data (over 300 TB of data) could not meet their SLA of 30 seconds.

To make things worse, the query performance was not even close to the target: the percentile calculations were taking about 6 minutes instead of the required 30 second SLA.

Keep reading
Marco Slot

What’s new in the Citus 9.4 extension to Postgres

Written byBy Marco Slot | September 5, 2020Sep 5, 2020

Our latest release to the Citus extension to Postgres is Citus 9.4. If you’re not yet familiar, Citus transforms Postgres into a distributed database, distributing your data and your SQL queries across multiple nodes. This post is basically the Citus 9.4 release notes.

If you’re ready to get started with Citus, it’s easy to download Citus open source packages for 9.4.

I always recommend people check out docs.citusdata.com to learn more. The Citus documentation has rigorous tutorials, details on every Citus feature, explanations of key concepts—things like choosing the distribution column—tutorials on how you can set up Citus locally on a single server, how to install Citus on multiple servers, how to build a real-time analytics dashboard, how to build a multi-tenant database, and more...

Keep reading

Many of you rely on databases to return correct results for your SQL queries, however complex your queries might be. And you probably place your trust with no questions asked—since you know relational databases are built on top of proven mathematical foundations, and since there is no practical way to manually verify your SQL query output anyway.

Since it is possible that a database’s implementation of the SQL logic could have a few errors, database developers apply extensive testing methods to avoid such flaws. For instance, the Citus open source repo on GitHub has more than twice as many lines related to automated testing than lines of database code. However, checking correctness for all possible SQL queries is challenging because of the lack of a "ground truth" to compare their outputs against, and the infinite number of possible SQL queries.

Keep reading

Page 9 of 32