Citus 10 is out! New features include columnar storage & Citus on a single node—plus we’ve open-sourced the shard rebalancer. Read the Citus 10 blog.

Skip navigation

Citus Blog

Articles tagged: popular

One of the main reasons people use the Citus extension for Postgres is to distribute the data in Postgres tables across multiple nodes. Citus does this by splitting the original Postgres table into multiple smaller tables and putting these smaller tables on different nodes. The process of splitting bigger tables into smaller ones is called sharding—and these smaller Postgres tables are called “shards”. Citus then allows you to query the shards as if they were still a single Postgres table.

One of the big changes in Citus 10—in addition to adding columnar storage, and the new ability to shard Postgres on a single Citus node—is that we open sourced the shard rebalancer.

Yes, that’s right, we have open sourced the shard rebalancer! The Citus 10 shard rebalancer gives you an easy way to rebalance shards across your cluster and helps you avoid data hotspots over time. Let’s dig into the what and the how.

Keep reading
Jeff Davis

Citus 10 brings columnar compression to Postgres

Written byBy Jeff Davis | March 6, 2021Mar 6, 2021

Citus 10 is out! Check out the Citus 10 blog post for all the details. Citus is an open source extension to Postgres (not a fork) that enables scale-out, but offers other great features, too. See the Citus docs and the Citus github repo and README.

This post will highlight Citus Columnar, one of the big new features in Citus 10. You can also take a look at the columnar documentation. Citus Columnar can be used with or without the scale-out features of Citus.

Postgres typically stores data using the heap access method, which is row-based storage. Row-based tables are good for transactional workloads, but can cause excessive IO for some analytic queries.

Columnar storage is a new way to store data in a Postgres table. Columnar groups data together by column instead of by row; and compresses the data, too. Arranging data by column tends to compress well, and it also means that queries can skip over columns they don’t need. Columnar dramatically reduces the IO needed to answer a typical analytic query—often by 10X!

Keep reading

Development on Citus first started around a decade ago and once a year we release a major new Citus open source version. We wanted to make number 10 something special, but I could not have imagined how truly spectacular this release would become. Citus 10 extends Postgres (12 and 13) with many new superpowers:

  • Columnar storage for Postgres: Compress your PostgreSQL and Citus tables to reduce storage cost and speed up your analytical queries.
  • Sharding on a single Citus node: Make your single-node Postgres server ready to scale out by sharding tables locally using Citus.
  • Shard rebalancer in Citus open source: We have open sourced the shard rebalancer so you can easily add Citus nodes and rebalance your cluster.
  • Joins and foreign keys between local PostgreSQL tables and Citus tables: Mix and match PostgreSQL and Citus tables with foreign keys and joins.
  • Functions to change the way your tables are distributed: Redistribute your tables in a single step using new alter table functions.
  • Much more: Better naming, improved SQL & DDL support, simplified operations.

These new capabilities represent a fundamental shift in what Citus is and what Citus can do for you.

Keep reading
Dimitri Fontaine

Reconnecting your application after a Postgres failover

Written byBy Dimitri Fontaine | February 12, 2021Feb 12, 2021

When those of us who work on Postgres High Availability explain how HA in Postgres works, we often focus on the server side of the stack. Having a Postgres service running with the expected data set is all-important and required for HA, of course. That said, the server side of the stack is not the only thing that matters when implementing high availability. Application code has a super important role to play, too.

In this post, you will learn what happens to your application code and connections when a Postgres failover is orchestrated. Your application might be running on Postgres on-prem with HA configured—or in the cloud—or on a managed PostgreSQL service such as Azure Database for PostgreSQL. Now, if you’re running your app on top of a managed service with HA, you probably don’t need to worry about how to implement HA, as HA is managed by the service. But it’s still useful to understand what happens to your application when a Postgres failover occurs.

Keep reading

One of the unique things about Postgres is that it is highly programmable via PL/pgSQL and extensions. Postgres is so programmable that I often think of Postgres as a computing platform rather than just a database (or a distributed computing platform—with Citus). As a computing platform, I always felt that Postgres should be able to take actions in an automated way. That is why I created the open source pg_cron extension back in 2016 to run periodic jobs in Postgres—and why I continue to maintain pg_cron now that I work on the Postgres team at Microsoft.

Using pg_cron, you can schedule Postgres queries to run periodically, according to the familiar cron syntax. Some typical examples:

Keep reading
Andres Freund

Improving Postgres Connection Scalability: Snapshots

Written byBy Andres Freund | October 25, 2020Oct 25, 2020

I recently analyzed the limits of connection scalability, to understand the most effective way to improve Postgres’ handling of large numbers of connections, and why that is important. I concluded that the most pressing issue is snapshot scalability.

This post details the improvements I recently contributed to Postgres 14 (to be released Q3 of 2021), significantly reducing the identified snapshot scalability bottleneck.

As the explanation of the implementation details is fairly long, I thought it’d be more fun for of you if I start with the results of the work, instead of the technical details (I’m cheating, I know ;)).

Keep reading

One common challenge with Postgres for those of you who manage busy Postgres databases, and those of you who foresee being in that situation, is that Postgres does not handle large numbers of connections particularly well.

While it is possible to have a few thousand established connections without running into problems, there are some real and hard-to-avoid problems.

Since joining Microsoft last year in the Azure Database for PostgreSQL team—where I work on open source Postgres—I have spent a lot of time analyzing and addressing some of the issues with connection scalability in Postgres.

Keep reading

When working on the internals of Citus, an open source extension to Postgres that transforms Postgres into a distributed database, we often get to talk with customers that have interesting challenges you won’t find everywhere. Just a few months back, I encountered an analytics workload that was a really good fit for Citus.

But we had one problem: the percentile calculations on their data (over 300 TB of data) could not meet their SLA of 30 seconds.

To make things worse, the query performance was not even close to the target: the percentile calculations were taking about 6 minutes instead of the required 30 second SLA.

Keep reading
Marco Slot

What’s new in the Citus 9.4 extension to Postgres

Written byBy Marco Slot | September 5, 2020Sep 5, 2020

Our latest release to the Citus extension to Postgres is Citus 9.4. If you’re not yet familiar, Citus transforms Postgres into a distributed database, distributing your data and your SQL queries across multiple nodes. This post is basically the Citus 9.4 release notes.

If you’re ready to get started with Citus, it’s easy to download Citus open source packages for 9.4.

I always recommend people check out docs.citusdata.com to learn more. The Citus documentation has rigorous tutorials, details on every Citus feature, explanations of key concepts—things like choosing the distribution column—tutorials on how you can set up Citus locally on a single server, how to install Citus on multiple servers, how to build a real-time analytics dashboard, how to build a multi-tenant database, and more…

Keep reading

This year, I was so excited about doing a workshop about optimizing Python & Django apps with Postgres superpowers for the PyCon 2020 conference.

Working with other developers on performance is something I always find amazing. So props to the Python people at Microsoft who encouraged my team to create a workshop on Postgres for PyCon 2020. Thank you to Nina Zakharenko, Dan Taylor, & Crystal Kelch.

Alas, we had to change our plans and find other ways to share the PostgreSQL workshop content that we had prepared. So I created a video on the topic of database performance for Django developers, to help teach you the PostgreSQL tips and tricks that have served me well in optimizing my Django apps. These tips are what I call “Postgres superpowers.”

Keep reading

Page 1 of 3