POSETTE: An Event for Postgres 2025 will happen virtually Jun 10-12, 2025. Call for Speakers is open! 💥
In my work as an engineer on the Postgres team at Microsoft, I get to meet all sorts of customers going through many challenging projects. One recent database migration project I worked on is a story that just needs to be told. The customer—in the retail space—was using Redshift as the data warehouse and Databricks as their ETL engine. Their setup was deployed on AWS and GCP, across different data centers in different regions. And they'd been running into performance bottlenecks and also was incurring unnecessary egress cost.
Specifically, the amount of data in our customer's analytic store was growing faster than the compute required to process that data. AWS Redshift was not able to offer independent scaling of storage and compute—hence our customer was paying extra cost by being forced to scale up the Redshift nodes to account for growing data volumes. To address these issues, they decided to migrate their analytics landscape to Azure.
Keep reading