If you want to learn more about Citus on Microsoft Azure, read this post about Hyperscale (Citus) on Azure Database for PostgreSQL.

Skip navigation

Citus Blog

Articles tagged: Hyperscale (Citus)

When working on the internals of Citus, an open source extension to Postgres that transforms Postgres into a distributed database, we often get to talk with customers that have interesting challenges you won’t find everywhere. Just a few months back, I encountered an analytics workload that was a really good fit for Citus.

But we had one problem: the percentile calculations on their data (over 300 TB of data) could not meet their SLA of 30 seconds.

To make things worse, the query performance was not even close to the target: the percentile calculations were taking about 6 minutes instead of the required 30 second SLA.

Keep reading

The last two months, I managed the agenda for our weekly Citus team meeting, the one time each week where our entire distributed team—with people spread across 6 different countries—gets together to talk about Citus things. As I chatted with our PostgreSQL folks to find speakers to give 10-minute “lightning talks”, I heard a chorus from several of the engineers: “see if you can get Joe to give a talk. His talks are always super interesting.”

I succeeded. Joe Nelson (known as begriffs online) did deliver a talk titled “Dominus SQL, lord of my domain.” And the engineers liked it. Not a surprise, as Joe’s content tends to be pretty popular, both on his personal blog, and on the Citus Data blog, including high traffic posts such as 5 ways to paginate in Postgres and Faster PostgreSQL Counting.

And when Joe agreed to let me interview him about his work on the Citus documentation (he’s quite busy so I wasn’t sure he would say yes), well, I was thrilled. This post is an edited transcript of my interview with Joe—and it’s your inside baseball view into how the documentation for the Citus open source project gets made.

Keep reading

For roughly ten years now, I’ve had the pleasure of running and managing databases for people. In the early stages of building an application you move quickly, adding new tables and columns to your Postgres database to support new functionality. You move quickly, but you don’t worry too much because things are fast and responsive–largely because your data is small. Over time your application grows and matures. Your data model stabilizes, and you start to spend more time tuning and tweaking to ensure performance and stability stay where they need to. Eventually you get to the point where you miss the days of maintaining a small database, because life was easier then. Indexes were created quickly, joins were fast, count(*) didn’t bring your database to a screeching halt, and vacuum was not a regular part of your lunchtime conversation. As you continue to tweak and optimize the system, you know you need a plan for the future and know how you’re going to continue to scale.

Now in GA: Introducing Hyperscale (Citus) on Azure Database for PostgreSQL

With Hyperscale (Citus) on Azure Database for PostgreSQL, we help many of those worries fade away. I am super excited to announce that Citus is now available on Microsoft Azure, as a new built-in deployment option on the Azure Database for PostgreSQL called Hyperscale (Citus).

Hyperscale (Citus) scales out your data across multiple physical nodes, with the underlying data being sharded into much smaller bits. The same database sharding principles that work for Facebook and Google are baked right into the database. But, unlike traditional sharded systems, your application doesn’t have to learn how to shard the data. With Azure Database for PostgreSQL, Hyperscale (Citus) takes Postgres, the open source relational database, and extends it with low level internal hooks.

Keep reading

Page 1 of 1