Citus 10.2 is out! 10.2 brings you new columnar & time series features—and is ready to support Postgres 14. Read the new Citus 10.2 blog.

Skip navigation

Citus Blog

Articles tagged: tips

Craig Kerstiens

Commenting your Postgres database

Written byBy Craig Kerstiens | October 17, 2018Oct 17, 2018

At Citus whether it’s looking at our own data or helping a customer debug a query I end up writing a lot of SQL. When I do write SQL I do my best to make sure it’s readable in case others need to come along and understand or modify, but admittedly I do have some bad habits from time to time such as using implicit joins. Regardless of my bad habits I still try to make my SQL and database as easy to understand for someone not already familiar with it. One of the biggest tools for that is comments.

Even early on in learning to program we take advantage of comments to explain and describe what our code is doing, even in times when it seems obvious. I see this less commonly in SQL and databases, which is a shame because data is just as valuable so making it easier to reason and work with seems logical. Postgres has a few great mechanisms you can start leveraging when it comes to commenting so you can better document things.

Keep reading
Gary Sahota

Fun with SQL: Unions in Postgres

Written byBy Gary Sahota | September 27, 2018Sep 27, 2018

Before joining the Citus Data team to work on the Postgres extension that transforms Postgres into a distributed database, I checked out the Citus Data blog to learn a bit more. And found all sorts of material for Postgres beginners as well as power users, with one of my favorites being the “Fun with SQL” series. After I joined, I jumped at the chance to write a Fun with SQL post, and the only question was what to write about. I chose unions.

In SQL, the UNION and UNION ALL operators help take multiple tables and combine the results into a single table of all matching columns. This operator is extremely useful if you want the results to come back as a single set of records.

Keep reading

This week we’re continuing our fun with SQL series. In past posts we’ve looked at generate_series, window functions, and recursive CTEs. This week we’re going to take a step backward and look at standard CTEs (common table expressions) within Postgres.

Admittedly SQL isn’t always the most friendly language to read. It’s a little more friendly to write, but even still not as naturally readable as something like Python. Despite it’s shortcomings there it is the lingua franca when it comes to data, SQL is the language and API that began with relational databases and now even non traditional databases are aiming to immitate it with their own SQL like thing. With CTEs though our SQL, even queries hundreds of lines long, can become readable to someone without detailed knowledge of the application.

CTEs (common table expressions), often referred to as with clauses/queries, are essentially views that are valid during the course of a transaction. They can reference earlier CTEs within that same transaction or query essentially allowing you separate building blocks on which you compose your queries. It is of note that CTEs are an optimization boundary, so in cases they may have worse performance than their alternative non-CTE queries. Even still they’re incredible useful for readability and should be considered when constructing large complex queries. Let’s dig in with an example.

Keep reading

Data security and data privacy are important, no one disputes that. We all want to keep private things private and to keep our data secure. And yet, data needs to be shared, to enable insights, to help organizations observe patterns and have those “ah-ha” moments. None of us want the extreme where, in an effort to keep data secure, there is no access to data of any form within your organization, and the result is no business insights or analytics. With GDPR going into effect, you’ve likely been rethinking what security controls you have in place.

Here at Citus Data we collaborate with SaaS businesses and larger enterprises alike, generally to consult on Postgres data models and how to best scale out their database. (Our Citus extension to Postgres enables you to scale out Postgres horizontally. The benefit: performance.) In working with teams, one common thing we’ve seen companies do is to restrict who can see which bits of Personally Identifiable Information (PII) within your database. There are a number of approaches, including heavyweight ETL processes that mask PII bits. An ETL process tends to introduce a certain amount of latency from the time data is in your system until the time it can be analyzed.

Fortunately, Postgres provides a few primitives that can be used directly within your database to hide PII, while still enabling sophisticated analytics and exploration of data in real time.

Here we’ll look at using Postgres schemas and views to provide access to data while keeping PII safe and hidden.

Keep reading
Craig Kerstiens

Fun with SQL: Functions in Postgres

Written byBy Craig Kerstiens | June 21, 2018Jun 21, 2018

In our previous Fun with SQL post on the Citus Data blog, we covered window functions. Window functions are a special class of function that allow you to grab values across rows and then perform some logic. By jumping ahead to window functions, we missed so many of the other handy functions that exist within Postgres natively. There are in fact several hundred built-in functions. And when needed, you can also create your own user defined functions (UDFs), if you need something custom. Today we’re going to walk through just a small sampling of SQL functions that can be extremely handy in PostgreSQL.

Keep reading
Craig Kerstiens

Fun with SQL: Window functions in Postgres

Written byBy Craig Kerstiens | June 1, 2018Jun 1, 2018

Today we continue to explore all the powerful and fun things you can do with SQL. SQL is a very expressive language and when it comes to analyzing your data there isn’t a better option. You can see the evidence of SQL’s power in all the attempts made by NoSQL databases to recreate the capabilities of SQL. So why not just start with a SQL database that scales? (Like my favorites, Postgres and Citus.)

Today, in the latest post in our ‘Fun with SQL’ series (earlier blog posts were about recursive CTEs, generate_series, and relocating shards on a Citus database cluster), we’re going to look at window functions in PostgreSQL. Window functions are key in various analytic and reporting use cases where you want to compare and contrast data. Window functions allow you to compare values between rows that are somehow related to the current row. Some practical uses of window functions can be:

  • Finding the first time all users performed some action
  • Finding how much each users bill increased or decreased from the previous month
  • Find where all users ranked for some sub-grouping

Keep reading
Craig Kerstiens

Preparing your multi-tenant app for scale

Written byBy Craig Kerstiens | May 22, 2018May 22, 2018

We spend a lot of time with companies that are growing fast, or planning for future growth. It may be you’ve built your product and are now just trying to keep the system growing and scaling to handle new users and revenue. Or you may be still building the product, but know that an even moderate level of success could lead to a lot of scaling. In either case where you spend your time is key in order to not lose valuable time.

As Donald Knuth states it in Computer Programming as an Art:

“Programmers waste enormous amounts of time thinking about, or worrying about, the speed of noncritical parts of their programs, and these attempts at efficiency actually have a strong negative impact when debugging and maintenance are considered. We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil. Yet we should not pass up our opportunities in that critical 3%.”

With the above in mind one of the most common questions we get is: What do I need to do now to make sure I can scale my multi-tenant application later?

We’ve written some before about approaches not to take such as schema based sharding or one database per customer and the trade-offs that come with that approach. Here we’ll dig into three key steps you should take that won’t be wasted effort should the need to scale occur.

Keep reading
Craig Kerstiens

Fun with SQL: Recursive CTEs in Postgres

Written byBy Craig Kerstiens | May 15, 2018May 15, 2018

Common Table Expressions (CTEs) are a powerful construct within SQL. In day to day conversation, you may hear CTEs referred to as WITH clauses. You can think of CTEs as similar to a view that is materialized only while that query is running and does not exist outside of that query. CTEs can be very useful building blocks for allowing your large SQL queries to be more readable. But, they can also be used recursively allowing you to create some very complex queries without having to drop down to a procedural language like plpgsql or plv8.

Keep reading

Data has a certain gravity and inertia. Once it’s stored it’s not likely to be actively moved or frequently modified. At least not for your one source of truth. Protecting that data and ensuring it’s both safely stored but also correct is worth the time investment because of the value it has.

Going further, your database schema and models are going to change far less than your application code. Because it changes less frequently the case can easily be made that spending some time to ensure correctness at the database level is a great return on time.

This post was the result of a recent talk I recently gave at PgDay Paris. The conference itself was a great local event in Paris, and while there we had a chance to meet with a few of our customers based in Paris as well. As it’s always great to get out in person and chat with people about Postgres and their experience in scaling their database, many remarked that the talk could be useful to others that weren’t there. So as I thought it would be worthwhile to write-up, and here you go:

Keep reading
Craig Kerstiens

Fun with SQL: generate_series in Postgres

Written byBy Craig Kerstiens | March 14, 2018Mar 14, 2018

There are times within Postgres where you may want to generate sample data or some consistent series of records to join in order for reporting. Enter the simple but handy set returning function of Postgres: generate_series. generate_series as the name implies allows you to generate a set of data starting at some point, ending at another point, and optionally set the incrementing value. generate_series works on two datatypes:

  • integers
  • timestamps

Keep reading

Page 2 of 3